指数函数的值域和定义域怎么求?
指数函数的一般表达式为y=a^x。其中a﹥0。
由指数函数的图象可知,X∈R。即指十级函数的定义域为X∈R。
求指数函数的值域通常有两种方法。一,可以先求指数函数的反函数,然后求反函数的定义域,则这个定义域就是原函数的值域。二,最值法。求出指数的最大和最小值,即可求出指数函数的值域。
定义域公式总结?
定义域公式的总结如下
函数定义域的求法:(1)分式的分母不能为零;(2)偶次方根的内部必须非负即大于等于零;(3)对数的真数为正,对数的底数大于零且不等于1;(4)x0中,x≠0。
函数定义域的求法
1求解方法
组合函数
由若干个基本函数通过四则运算形成的函数,其定义域为使得每一部分都有意义的公共部分。
原则:(1)分式的分母不能为零;(2)偶次方根的内部必须非负即大于等于零;(3)对数的真数为正,对数的底数大于零且不等于1;(4)x0中,x≠0。
复合函数
若y=发(u),u=g(x),则y=f[g(x)]就叫做f和g的复合函数。其中y=f(U)叫做外函数,u=g(x)叫做内函数。
例如:(1)已知y=f(x)的定义域D1,求y=f[g(x)]的定义域D2。
解法:解不等式:g(x)∈D1
(2)已知y=f[g(x)]的定义域D1,求y=f(x)的定义域D2。
解法:令u=g(x),x∈D1,求函数g(x)的值域。
2求函数定义域一般原则
①如果为整式,其定义域为实数集;
②如果为分时,其定义域是是分母不为0的实数集合;
③如果是二次根式(偶次根式),其定义域是使根号内的式子不小于0的实数集合;
④如果是由以上几个部分的数学式子构成的,其定义域是使各个式子都有意义的实数集合。
三角函数的定义域怎么求
求三角函数的定义域是正弦函数y=sinxx∈R,余弦函数y=cosxx∈R,正切函数y=tanxx≠kπ+π/2,k∈Z,余切函数y=cotxx≠kπ,k∈Z,正割函数y=secxx≠kπ+π/2,k∈Z,余割函数y=cscxx≠kπ,k∈Z。
三角函数(也叫做“圆函数“)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。
分段函数定义域怎么求
求函数的定义域的依据就是要使函数的解析式有意义的自变量的取值范围。其求解根据一般有:分式中,分母不为零;偶次根式中,被开方数非负;对数的真数大于0。
定义域(domainofdefinition)指自变量x的取值范围,是函数三要素(定义域、值域、对应法则)之一,对应法则的作用对象。求函数定义域主要包括三种题型:抽象函数,一般函数,函数应用题。
函数的定义域怎么求
函数的定义域分为自身定义域和环境定义域。
自身定义域就是使表达式有意义的定义域,比如说分式的分母不能为0,还有对数的自变量要大于0,还有正切函数的角度值不能取y轴上的角度值,余切函数的角度值不能取x轴上的角度值,环境定义域就是指在实际环境中的定义域,如在一个实际应用题中,要求某一个未知量的值,二而这个未知数具有一定的物理意义或数学意义时候,那么这时候这个未知量就必须满足其本身的要求。
反函数的定义域怎么求
反函数的定义域用x=f^(-1)(y)求,一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f(x)的反函数为x=f-1(y)。存在反函数(默认为单值函数)的条件是原函数必须是一一对应的(不一定是整个数域内的)。注意:上标?1指的是函数幂,但不是指数幂。
一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x=g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作x=f-1(y)。反函数x=f-1(y)的定义域、值域分别是函数y=f(x)的值域、定义域。最具有代表性的反函数就是对数函数与指数函数。