九年级全册数学所有概念总结 九年级全册数学所有概念图

九年级全册数学所有概念?

1、过两点有且只有一条直线    2、两点之间线段最短    3、同角或等角的补角相等    4、同角或等角的余角相等    5、过一点有且只有一条直线和已知直线垂直    6、直线外一点与直线上各点连接的所有线段中,垂线段最短    7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行    8、如果两条直线都和第三条直线平行,这两条直线也互相平行    9、同位角相等,两直线平行    10、内错角相等,两直线平行    11、同旁内角互补,两直线平行    12、两直线平行,同位角相等    13、两直线平行,内错角相等    14、两直线平行,同旁内角互补    15、定理 三角形两边的和大于第三边    16、推论 三角形两边的差小于第三边    17、三角形内角和定理 三角形三个内角的和等于180°    18、推论1 直角三角形的两个锐角互余    19、推论2 三角形的一个外角等于和它不相邻的两个内角的和    20、推论3 三角形的一个外角大于任何一个和它不相邻的内角    21、全等三角形的对应边、对应角相等    22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等    23、角边角公理( ASA)有两角和它们的夹边对应相等的 两个三角形全等    24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等    25、边边边公理(SSS) 有三边对应相等的两个三角形全等    26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等    27、定理1 在角的平分线上的点到这个角的两边的距离相等    28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上    29、角的平分线是到角的两边距离相等的所有点的集合    30、等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)    31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边    32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合    33、推论3 等边三角形的各角都相等,并且每一个角都等于60°    34、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)    35、推论1 三个角都相等的三角形是等边三角形    36、推论 2 有一个角等于60°的等腰三角形是等边三角形    37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半    38、直角三角形斜边上的中线等于斜边上的一半    39、定理 线段垂直平分线上的点和这条线段两个端点的距离相等    40、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上    41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合    42、定理1 关于某条直线对称的两个图形是全等形    43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线    44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上    45、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称    46、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2    47、勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形    48、定理 四边形的内角和等于360°    49、四边形的外角和等于360°    50、多边形内角和定理 n边形的内角的和等于(n-2)×180°    51、推论 任意多边的外角和等于360°    52、平行四边形性质定理1 平行四边形的对角相等    53、平行四边形性质定理2 平行四边形的对边相等    54、推论 夹在两条平行线间的平行线段相等    55、平行四边形性质定理3 平行四边形的对角线互相平分    56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形    57、平行四边形判定定理2 两组对边分别相等的四边 形是平行四边形    58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形    59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形    60、矩形性质定理1 矩形的四个角都是直角    61、矩形性质定理2 矩形的对角线相等    62、矩形判定定理1 有三个角是直角的四边形是矩形    63、矩形判定定理2 对角线相等的平行四边形是矩形    64、菱形性质定理1 菱形的四条边都相等    65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角    66、菱形面积=对角线乘积的一半,即S=(a×b)÷2    67、菱形判定定理1 四边都相等的四边形是菱形    68、菱形判定定理2 对角线互相垂直的平行四边形是菱形    69、正方形性质定理1 正方形的四个角都是直角,四条边都相等    70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角    71、定理1 关于中心对称的两个图形是全等的    72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分    73、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称    74、等腰梯形性质定理 等腰梯形在同一底上的两个角相等    75、等腰梯形的两条对角线相等    76、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形    77、对角线相等的梯形是等腰梯形    78、平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等    79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰    80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边    81、三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半    82、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h    83、(1)比例的基本性质:    如果a:b=c:d,那么ad=bc    如果 ad=bc ,那么a:b=c:d    84、(2)合比性质:    如果a/b=c/d,那么(a±b)/b=(c±d)/d    85、(3)等比性质:    如果a/b=c/d=…=m/n(b+d+…+n≠0),    那么(a+c+…+m)/(b+d+…+n)=a/b    86、平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例    87、推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例    88、定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边    89、平行于三角形的一边,并且和其他两边相交的直线, 所截得的三角形的三边与原三角形三边对应成比例    90、定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似    91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)    92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似    93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)    94、判定定理3 三边对应成比例,两三角形相似(SSS)    95、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似    96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比    97、性质定理2 相似三角形周长的比等于相似比    98、性质定理3 相似三角形面积的比等于相似比的平方    99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值    100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值    101、圆是定点的距离等于定长的点的集合    102、圆的内部可以看作是圆心的距离小于半径的点的集合    103、圆的外部可以看作是圆心的距离大于半径的点的集合    104、同圆或等圆的半径相等    105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆    106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线    107、到已知角的两边距离相等的点的轨迹,是这个角的平分线    108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线    109、定理 不在同一直线上的三点确定一个圆。    110、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧    111、推论1    ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧    ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧    ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧    112、推论2 圆的两条平行弦所夹的弧相等    113、圆是以圆心为对称中心的中心对称图形    114、定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等    115、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等    116、定理 一条弧所对的圆周角等于它所对的圆心角的一半    117、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等    118、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径    119、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形    120、定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角    121、①直线L和⊙O相交 d<r    ②直线L和⊙O相切 d=r    ③直线L和⊙O相离 d>r    122、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线    123、切线的性质定理 圆的切线垂直于经过切点的半径    124、推论1 经过圆心且垂直于切线的直线必经过切点    125、推论2 经过切点且垂直于切线的直线必经过圆心    126、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角    127、圆的外切四边形的两组对边的和相等    128、弦切角定理 弦切角等于它所夹的弧对的圆周角    129、推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等    130、相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等    131、推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项    132、切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项    133、推论 从圆外一点引圆的两条割线,这一点到每条 割线与圆的交点的两条线段长的积相等    134、如果两个圆相切,那么切点一定在连心线上    135、①两圆外离 d>R+r    ②两圆外切 d=R+r    ③两圆相交 R-r<d<R+r(R>r)    ④两圆内切 d=R-r(R>r)    ⑤两圆内含 d<R-r(R>r)    136、定理 相交两圆的连心线垂直平分两圆的公共弦    137、定理 把圆分成n(n≥3):    ⑴依次连结各分点所得的多边形是这个圆的内接正n边形    ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形    138、定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆    139、正n边形的每个内角都等于(n-2)×180°/n    140、定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形    141、正n边形的面积Sn=pnrn/2 p表示正n边形的周长    142、正三角形面积√3a/4 a表示边长    143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4    144、弧长计算公式:L=n兀R/180    145、扇形面积公式:S扇形=n兀R^2/360=LR/2  

延伸阅读

初三数学有哪些内容?

初三数学有一元二次方程,二次函数,反比例函数,三角函数和解直角三角形,四边形的有关内容,图形的相似,几何图形中的圆是最关键的内容,图形的变换和三视图,有关概率的计算,总之初三的数学内容比较复杂,连同初一初二的内容综合起来,所以初三的学习是紧张的。

九年级数学知识点有多少个?

九年级数学知识点有一元二次方程,二次函数,图形的旋转,锐角三角函数,反比例函数,相似三角形,圆的有关知识,位似图形,视图和投影,统计与概率,这些都是章节内容,具体知识点细分的话还有很多很多,比如说二次函数中包括图像性质应用等等

九年级如何提高数学成绩?

1. 重视案例,打牢基础

中考是初中以来规模最大,最正规的一次考试。在正规考试当中,中考出题是非常严谨的,难易度也是适中的。

通常情况下,中考试卷当中的难题不多,大概占到试卷的20%左右,剩下的都是基础题。

初三学生复习的时候不要好高骛远,要重视基础。重视基础需要初三学生回归教材上的基础知识,比如基本概念、案例、习题等。重点研究教材上的典型案例,打牢基础。

2. 强化训练,提高解题能力

想要数学成绩好,解题能力差不了。在复习备考过程中,初三学生要强化训练,提高解题能力。

强化训练离不开做题,初三学生做题的时候,要提高做题的数量跟质量,每做一道题都要认真分析它的解题思路、答题技巧、易错点等。

做题的最高境界是做一道题,一类题也会做了,初三学生要努力向这个方向发展。

3. 认真总结,整合课本知识

初三数学复习时,老师会带着大家进行章节复习跟专题板块复习。

复习过程中,初三学生要学会自己总结教材的基本内容。总结的方式有很多,比如思维导图的方式、知识树的方式、构建知识框架的方式。总结得多了,知识点的联系就一目了然了。

中考试卷考到综合题的时候,就能快速地筛选出教材上的知识点了。

4. 要学以致用,灵活应用

中考是一次综合性质的考试,它不仅考察学生对教材上知识点的理解能力,还考察学生对知识点的灵活应用能力。

而且随着中考的改革,中考试卷考察越来越灵活。如果学生只知道死记硬背,是很难拿高分的。所以,初三学生要培养学以致用的能力,对于教材上的知识点,不仅要理解,还要知道它是怎么用的。

5. 养成良好的做题习惯

在每次考试当中,很多学生会发现,有些题不是不会做而丢分,而是做题习惯不好而丢分。比如审题失误,题目让选错的,结果选成对的。

演算不工整,抄错数字或者符号等。为了避免在中考当中因失误而丢分,初三学生要养成良好的做题习惯。每次做题的时候,要注意做题的每个细节,把细节做到位,用细节赢中考。

人教版九年级数学学什么?

人教版九年级数学上册主要包括了二次根式、二元一次方程、旋转、圆和概率。

  九年级数学(上)知识点

  第二十一章 二次根式

  一.知识框架

  二.知识概念

  二次根式:一般地,形如√ā(a≥0)的代数式叫做二次根式。当a>0时,√a表示a的算数平方根,其中√0=0

  对于本章内容,教学中应达到以下几方面要求:

  1. 理解二次根式的概念,了解被开方数必须是非负数的理由;

  2. 了解最简二次根式的概念;

  3. 理解并掌握下列结论:

  1) 是非负数; (2) ; (3) ;

  4. 掌握二次根式的加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算;

  5. 了解代数式的概念,进一步体会代数式在表示数量关系方面的作用

初三数学有几章?

这要看教材版本,人民教育出版社的初三数学上册共有五章书,第一章《一元二次方程》,第二章《二次函数》,第三章《旋转》,第四章巜圆》,第五章《概率初步》。人民教育出版社的初三下册共有四章,第一章《反比例函数》,第二章《相似》,第三章《锐角三角函数》,第四章《投影与视图》。

九年级数学应该怎么学习?

以亲身经历告诉你如何学好初中数学,尤其是九年级数学。

第一:上课认真听课。上课认真听课是重中之重,是你能够学好数学的前提和基础。我们班有一个男孩非常认真,他不是上课认真,是平时课间很认真,晚自习很认真,但是上课不认真听讲。他一上课就睡觉,看英语书,然后自习课就拼命学习。结果可想而知,成就中等,不是很差,但是也不优秀。所以说上课认真听讲非常非常重要,因为老师讲的都是精华,如果上课不认真,即使课后学的很努力,也很难取得优异的成绩。

第二:多做题。在认真听课的基础上,一定要多做题,数学只有在多做题上才能提高自己,需要学生的动手能力。自己可以去书店买一些资料,习题来做。尽量做到一课一练。然后一单元一练。多做做卷子,不会的问老师,一定要弄明白,然后举一反三。

上面这两点做到了,绝对能学好了。相信我。

版权声明