矩阵的逆是什么?
1.
矩阵的逆 定义: 设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=I。 则我们称B是A的逆矩阵,而A则被称为可逆矩阵。 可逆条件: A是可逆矩阵的充分必要条件是,即可逆矩阵。
2.
矩阵的伪逆和左右逆 伪逆矩阵: 伪逆矩阵是逆矩阵的广义形式。由于奇异矩阵或非方阵的矩阵不存在逆矩阵,但在matlab里可以用函数pinv(A)求其伪逆矩阵。基本语法为X=pinv(A),X=pinv。
延伸阅读
两矩阵的逆怎么求?
1、先按照矩阵的加法将两矩阵相加,得到一个新的矩阵。
2、之后再求新矩阵的逆矩阵,可以采用初等变换法,即:
求元索为具体数字的矩阵的逆矩阵,常用初等变换法‘如果A可逆,则A’可通过初等变换,化为单位矩阵
I
:
当A通过初等变换化为单位处阵的同时,对单位矩阵I作同样的初等变换,就化为A的逆矩阵。
3、最后根据定义法验证所求逆矩阵:设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E ,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。E为单位矩阵。
逆矩阵和矩阵的逆有什么区别?
一、线性代数中的矩阵的转置和矩阵的逆矩阵有2点不同:
1、两者的含义不同:
(1)矩阵转置的含义:将A的所有元素绕着一条从第1行第1列元素出发的右下方45度的射线作镜面反转,即得到A的转置。一个矩阵M, 把它的第一行变成第一列,第二行变成第二列等,最末一行变为最末一列, 从而得到一个新的矩阵N。 这一过程称为矩阵的转置。即矩阵A的行和列对应互换。
(2)逆矩阵的含义:一个n阶方阵A称为可逆的,或非奇异的,如果存在一个n阶方阵B,使得AB=BA=E,则称B是A的一个逆矩阵。A的逆矩阵记作A-1。
2、两者的基本性质不同:
(1)矩阵转置的基本性质:(A±B)T=AT±BT;(A×B)T= BT×AT;(AT)T=A;(KA)T=KA。
(2)逆矩阵的基本性质:可逆矩阵一定是方阵。如果矩阵A是可逆的,其逆矩阵是唯一的。A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)。
二、矩阵的转置和逆矩阵之间的联系:矩阵的转置和逆矩阵是两个完全不同的概念。转置是行变成列列变成行,没有本质的变换,逆矩阵是和矩阵的转置相乘以后成为单位矩阵的矩阵。
扩展资料:
一、逆矩阵的其它性质:
1、若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。
2、两个可逆矩阵的乘积依然可逆。
3、矩阵可逆当且仅当它是满秩矩阵。
二、逆矩阵性质的证明:
1、逆矩阵是对方阵定义的,因此逆矩阵一定是方阵。设B与C都为A的逆矩阵,则有B=C。
2、假设B和C均是A的逆矩阵,B=BI=B(AC)=(BA)C=IC=C,因此某矩阵的任意两个逆矩阵相等。
3、由逆矩阵的唯一性,A-1的逆矩阵可写作(A-1)-1和A,因此相等。
4、矩阵A可逆,有AA-1=I 。(A-1)TAT=(AA-1)T=IT=I ,AT(A-1)T=(A-1A)T=IT=I由可逆矩阵的定义可知,AT可逆,其逆矩阵为(A-1)T。而(AT)-1也是AT的逆矩阵,由逆矩阵的唯一性,因此(AT)-1=(A-1)T。
5、在AB=O两端同时左乘A-1(BA=O同理可证),得A-1(AB)=A-1O=O,而B=IB=(AA-1)B=A-1(AB),故B=O。
6、由AB=AC(BA=CA同理可证),AB-AC=A(B-C)=O,等式两边同左乘A-1,因A可逆AA-1=I 。得B-C=O,即B=C。
矩阵的逆的行列式公式推导?
矩阵逆矩阵的行列式等于原矩阵行列式的倒数。
证明如下:
因为 AB=BA=E(单位阵),B是A的逆矩阵.
所以 |AB|=|BA|=1。
当A是方阵时,|AB|=|A||B|,|BA|=|B||A|,
有 |B|=1/|A|。
扩展资料:
逆矩阵的性质定理以及证明
性质定理:
1、可逆矩阵一定是方阵。
2、如果矩阵A是可逆的,其逆矩阵是唯一的。
3、A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。
4、可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)。
5、若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。
6、两个可逆矩阵的乘积依然可逆。
7、矩阵可逆当且仅当它是满秩矩阵。
证明:
1、逆矩阵是对方阵定义的,因此逆矩阵一定是方阵。
2、设B与C都为A的逆矩阵,则有B=C。
3、假设B和C均是A的逆矩阵,B=BI=B(AC)=(BA)C=IC=IC,因此某矩阵的任意两个逆矩阵相等。
4、由逆矩阵的唯一性,A-1的逆矩阵可写作(A-1)-1和A,因此相等。
矩阵A可逆,有AA-1=I 。(A-1) TAT=(AA-1)T=IT=I ,AT(A-1)T=(A-1A)T=IT=I。
由可逆矩阵的定义可知,AT可逆,其逆矩阵为(A-1)T。而(AT)-1也是AT的逆矩阵,由逆矩阵的唯一性,因此(AT)-1=(A-1)T。
5、1)在AB=O两端同时左乘A-1(BA=O同理可证),得A-1(AB)=A-1O=O
而B=IB=(AA-1)B=A-1(AB),故B=O。
2)由AB=AC(BA=CA同理可证),AB-AC=A(B-C)=O,等式两边同左乘A-1,因A可逆AA-1=I 。
得B-C=O,即B=C。
什么是矩阵的逆矩阵?
若矩阵A的平方等于A,则矩阵A=0或矩阵A=E,此命题成立的条件是矩阵A或A-E可逆。
矩阵A为n阶方阵,若存在n阶矩阵B,使得矩阵A、B的乘积为单位阵,则称A为可逆阵,B为A的逆矩阵。若方阵的逆阵存在,则称为可逆矩阵或非奇异矩阵,且其逆矩阵唯一。
一般所说的伪逆是指摩尔-彭若斯广义逆,它是由E. H. Moore和Roger Penrose分别独立提出的。
可逆矩阵计算:
高斯消元法是最经典也是最广为人知的一种矩阵求逆方法,但是在现实应用中很少用到高斯消元法来进行矩阵的逆矩阵的求解。
高斯消元法有两个版本:行变换版本与列变换版本,在日常应用中行变换应用的更广泛。这两个基本原理都是相同的。高斯消元法先将矩阵A与单位矩阵I进行连接形成一个新的增广矩阵。
矩阵的逆定义?
设A是一个n阶矩阵,若存在另一个n阶矩阵B,使得: AB=BA=E ,则称方阵A可逆,并称方阵B是A的逆矩阵。
矩阵的逆矩阵怎么算?
最简单的办法是用增广矩阵。如果要求逆矩阵是A,则对增广矩阵(AE)进行初等行变换,E是单位矩阵,将A化到E,此时此矩阵的逆就是原来E的位置上的那个矩阵,原理是A逆乘以(AE)=(EA逆)初等行变换就是在矩阵的左边乘以A的逆矩阵得到的。
步骤/方式二
设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,使得:AB=BA=E,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。注:E为单位矩阵。可逆矩阵一定是方阵。如果矩阵A是可逆的,其逆矩阵是唯一的。
步骤/方式三
A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T(转置的逆等于逆的转置)若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。