10进制都是几到几
十进制:十进制是大家熟悉的进位计数制,共有0,1,2,3,4,5,6,7,8,9这10个数字符号,这是个数字符号又称为数码。基数为10,计算时,每位逢十进一
例如:123.45 =1*102+2*101+3*100+4*10-1+5*10-2。其中,102,101,100,10-1,10-2,称为权,整数部分中每位的幂是该位的位数减一,小数部分中每位的幂是该位的位数。
二进制:二进制是更为简单,随计算机的发展兴旺起来。有0,1这两个数码构成。基数为2。逢二进一
例如:10110.11=1*24+0*23+1*22+1*21+0*20+1*2-1+1*2-2=[22.75]10,
十六进制:学习和研究计算机二进制数的一中工具,共有0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F等16个数码,基数16,计算时,每位逢16进一。
例如:70F.B1=7×162+0×161+F×160+B×16-l+1×16-2=[1807.6914]10,
在计算机内部,都是二进制表示,采用晶体管的导通和截至,脉冲的高电平和低电平很容易表示。运算简单,方便用于电子线路的实现。十六进制的出现可以减轻阅读和书写二进制的负担。例如:1001001111110010B=93F2H
延伸阅读
什么是十进制数
十进制数是组成以10为基础的数字系统,有0,1,2,3, 4, 5, 6, 7, 8, 9十个基本数字组成。
十进制数什么
十进制就是正常的数字,超过10向前进一位,二进制只有1和0,比如1在第五位,就用1×2的五减一次方。
一个数如何写成十进制数
从数字组成的字符串转化为十进制数步骤如下:
1、挨个读取数组,从第0位开始
2、将字符转化为数字。比如从’1’转化为1。可以参考ASCII码表,字符’0’是48,所以只需要将字符减去48即可。
3、将前一个计算出的十进制数(初始化为0)乘以10加上第二步计算出的数字。
4、循环1-3步直到读取完数组内所有内容。
之所以这样算需要举个例子:比如数组内内容是’1′,’5′,’9’。计算结果肯定是159。这个159等于1*100+5*10+9*1。我们定义变量S来作为结果(初始化为0)。
十进制怎样计算
十进制数的运算遵循:加法时:“逢十进一”;减法时:“借一当十”。 十进制数中,数码的位置不同,所表示的值就不相同。 十进制是以10为基础的数字系统。而如果用不多于10个号码,代表一切数值,不论多大,以进1位表示10倍,进二位代表100倍,依此类推的十进制数字系统,则称为十进位制。
二进制同样是“位值制”。同一个数码1,在不同数位上表示的数值是不同的。如11111,从右往左数,第一位的1就是一,第二位的1表示二,第三位的1表示四,第四位的1表示八,第五位的1表示十六。 所谓二进制,也就是计算机运算时用的一种算法。二进制只由一和零组成。 三进制是以3为底数的进位制,三进制数有0、1、2三个数码,逢三进一。在计算机发展的早期,采用了一种偏置了的三进制(对称三进制),有-1<一般用T表示>、0、1三个数码,这种三进制逢+/-2进一。
四进制,以4为基数,用0,1,2,3表示的一种计算实数的一种进制。因其具体算法为逢四进一,故而得名。
十进制有哪些数
十进制
计数方法之一
600,3/5,-7.99……看着这些耳熟能详的数字,你有没有想太多呢?其实这都是全世界通用的十进制,即1.满十进一,满二十进二,以此类推……2.按权展开,第一位权为10^0,第二位10^1……以此类推,第N位10^(N-1),该数的数值等于每位位的数值*该位对应的权值之和。
基本信息
中文名
十进制
外文名
decimal system
别名
无
十进制的数有哪些
就到独的一个数字而言,所有的数都可以是十进制的数。如10,100,150等等。十进制只是一个计算规则,比如同样是一加一,计算规则不一样,那结果也不同,如果按十进制来计算,一加一等于二,如果按二进制来计算则等于10。所以但看一个数字,是不能完全确定是哪个进制的数。
十进制数是什么意思
一个以10为基数的数系,在理论上,某一位上的每一个单位都是下一位上一个单位的10倍。
1.十进制数是组成以10为基础的数字系统。
2.十进位位值制记数法包括十进位和位值制两条原则,”十进”即满十进一;”位值”则是同一个数位在不同的位置上所表示的数值也就不同,如三位数”111″,右边的”1″在个位上表示1个一,中间的”1″在十位上就表示1个十,左边的”1″在百位上则表示1个百。
3.十进制数的特征是:
(1)有10个数字:0、1、2、3、4、5、6、7、8、9。
(2)运算时逢十进一。
(3)每个数字在不同的数位上,其值的大小是不同的。
数位:个 十 百 千 万 ……
数值:100 101 102 103 104 ……
十进制是怎么算的
十进制数的运算遵循:加法时:“逢十进一”;减法时:“借一当十”。 十进制数中,数码的位置不同,所表示的值就不相同。
式中,每个对应的数码有一个系数1000,100,10,1与之相对应,这个系数就叫做权或位权。十进制数的位权一般表示为:10n-1
式中,10为十进制的进位基数;10的i次为第i位的权;n表示相对于小数点的位置,取整数;当n位于小数点的左边时,依次取n=1、2、3……n。位于小数点的右边时,依次取n=-1、-2、-3……
因此,634.27可以写为: 634.27=6×102+3×101+4×100+2×10-1+7×10-2